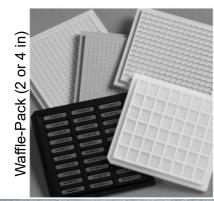


Gel-Pak

Bio-inspired Textured Carrier for IC Handling

> Raj Varma 4-15-2020

Overview

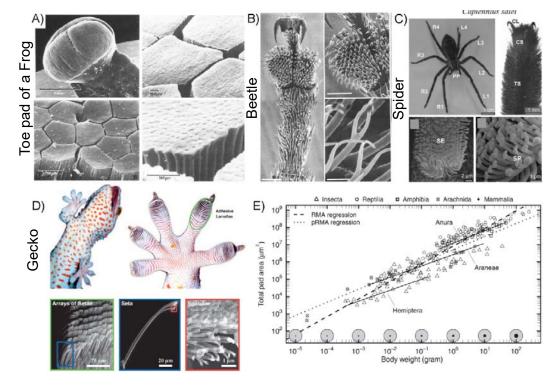

- Brief overview of IC handling trays
- Reasons for bio-inspired solutions
- Gel-Pak development
- Compared to existing carrier trays
- Summary

IC Carrier Trays

- Multiple handling steps between wafer-to-substrate
- Handling options between processes
 - Trays, Tape & Reel and others
- Pocket size specific to IC dimensions
 - >2000 different pocket dimensions exist
 - Standards developed in the 80's
- Yield issues
 - Damage from free movement within pocket
 - Small ICs can escape or flip during transport
 - Susceptible to jumping out of an open package subject to small vibrations, static charge or strong airflow
- Limitations
 - Edge collet pickup

IC Carrier Requirements

- Immobilize during Shipping & Handling (S&H)
- Stress free placing and picking
- Residue & damage free IC delivery


Adequate adhesion but easy release similar to a **Dry Adhesive**

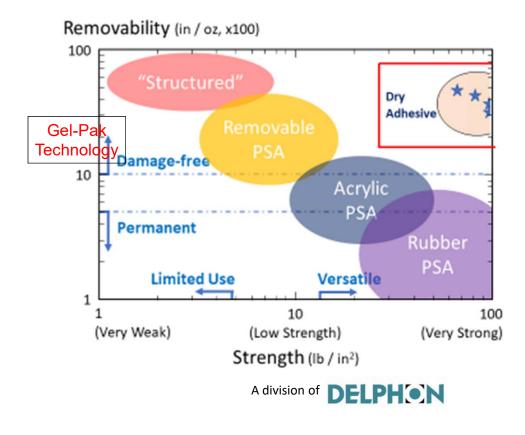
- Accommodate changing die dimensions
- Compatible with existing PnP and SMT machines
- Reusable
- Meet UPH targets

Bio Adhesives

- A Review of the State of Dry Adhesives: Biomimetic Structures and the Alternative Designs They Inspire
- J. Eisenhaure and S. Kim; University of Illinois, Micromachines 2017, 8, 125

Learnings

- Holding relied on a textured pads & contact area proportional to body weight
- Holding & release is a combination of specialized adhesive systems and surface texture
 - Viscoelasticity and mechanical interlocking
- A dry adhesive system that has strong holding but easy release by altering texture, contact area & adhesive response



IC Handling Differences Over Others

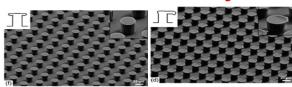
Bio

- Surface roughness: In nature the surfaces are very rough so fibrils are very soft with long aspect ratio to give its compliance. IC surfaces are not as rough.
- Mass: ICs are low in mass and the holding force to be just enough to survive drop, but easy to pick in an automated PnP process.
- <u>Extreme temperatures</u>: In nature the temperatures are not as extreme.
 - IC S&H ranges from -10C to 50C.
- Fragility: Sensitive to down & pick force.
- High UPH: PnP and SMT arms moving much faster

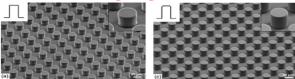
Commercial Dry Adhesives

Product Development Criteria

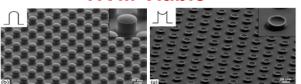
- Effectively immobilize the IC but still easy to pick
- HVM process friendly
 - Molding, extrusion or other HVM fabrication techniques
- Comparable total-cost solution
 - Meet established back-end process cost models
 - Similar process UPH
- Compatible tray form factor
 - Standardized since the 80's


Texture vs. Tack - Published Research

Contact geometry	Pillar radius, r (µm)	Tip dimensions (μm)	E* (MPa)
Mushroom tip (fabricated by printing)	10 25	$r_I \sim 12.9\pm0.3$ $r_I \sim 32.1\pm1.5$	2.50 ^(*)
Spatular tip	10	$r_I = 11.3$	2.29(*)
r_2 r_1	25	$r_2 = 10.1$	1.81(*)
	25	$r_1 \sim 33.8$ $r_2 \sim 30.1$	1.81

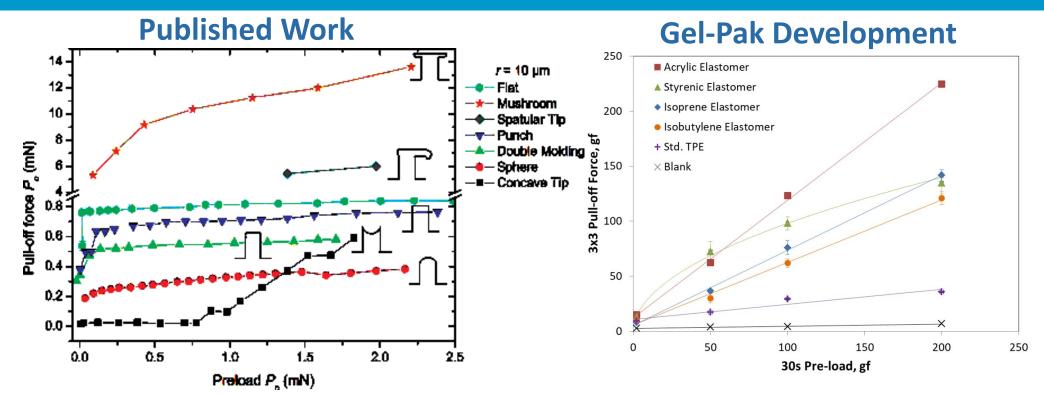

Contact geometry	Pillar radius, r (µm)	Tip dimensions (μm)	E* (MPa)
Flat tip	2.5		1.38
	5		1.30
	10		0.95
	25		0.76
Flat tip with rounded edges	2.5	r = 2.9 $r_2 = 2.7$	1.38
	5	r = 5.2 $r_2 = 4.8$	1.00
	10	r = 10.0 $r_2 = 9.0$	1.16
	25	r = 25.5 $r_2 = 21.6$	0.85
			785

Contact geometry	Pillar radius, r (µm)	Tip dimensions (μm)	E* (MPa)
Spherical tip	2.5	$r_I = 9.3$	1.34(*)
	5	$r_I = 16.4$	1.13(*)
	10	$r_I = 24.1$	1.02(*)
	25	r _I = 39.3	0.58(*)
Concave tip	5	r ₁ ~ 3	0.60
		h = 9	
	10	$r_1 \sim 3$ h = 9	0.59
	25	$r_1 \sim 6$ $h = 9$	0.50


Not HVM Friendly

Challenging for HVM

HVM Viable



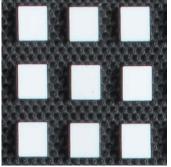
Contact Shape Controls Adhesion of Bioinspired Fibrillar Surfaces,
A. Campo, C. Greiner, E Arzt, Max Planck Institute for Metals Research; Langmuir 2007, 23, 10235-10243

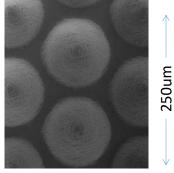
Tack Force

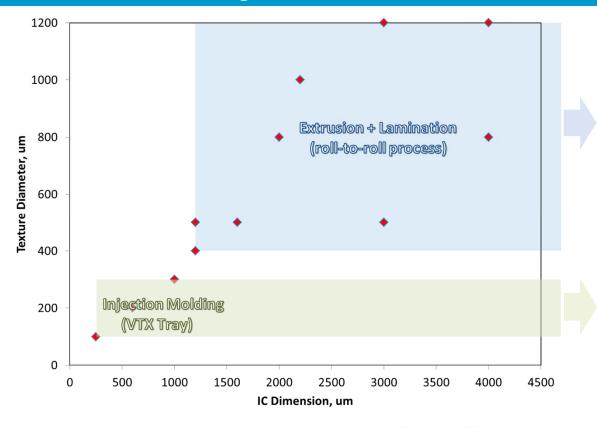
6 different Textures, 1 elastomer

Contact Shape Controls Adhesion of Bioinspired Fibrillar Surfaces, A. Campo, C. Greiner, E Arzt, Max Planck Institute for Metals Research; Langmuir 2007, 23, 10235-10243 1 Texture, 5 different elastomers

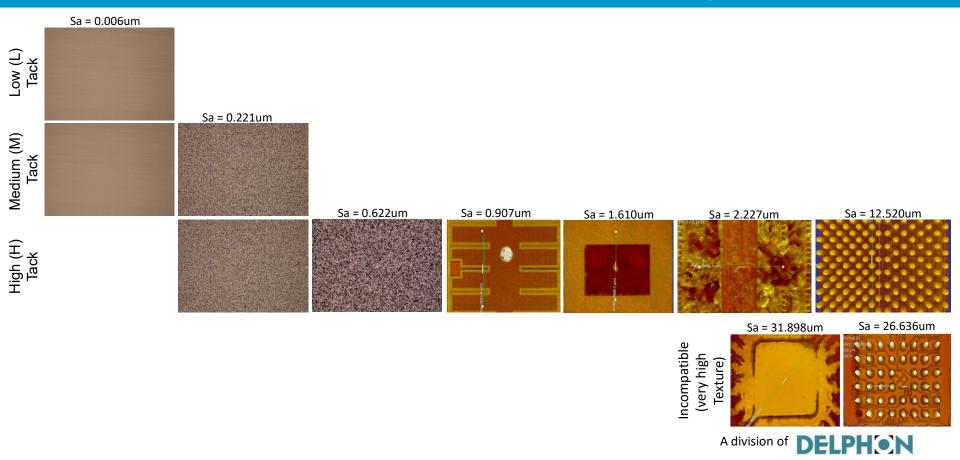
Challenges During Development

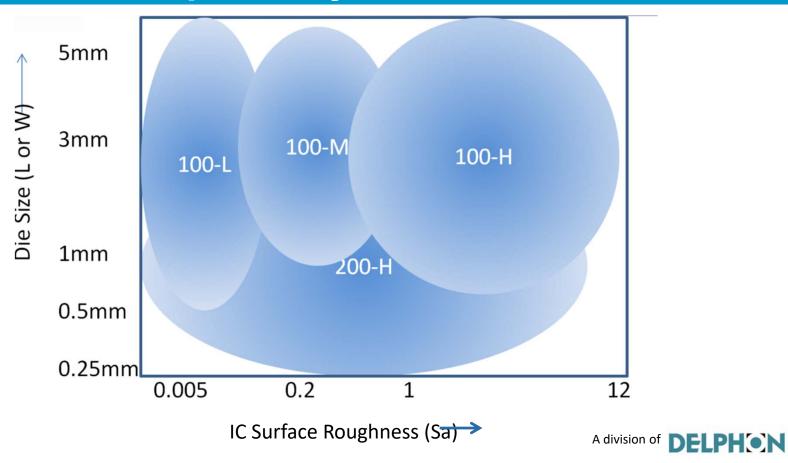

- Surface texturing not in IC handling space
 - Industrial solutions are mostly for ergonomic considerations
- No standard tack metrology exists on textured surfaces
- Process challenges
 - Demolding, roller/mold sticking, texture crushing in roll-to-roll processing
 - Precise texture & tray flatness
- Tuning tack & texture to survive shock & vibration but still easy to pick





Textured VTX Tray





Compatible IC Surface Roughness

IC Compatibility of VTX Textures/Tack


Compared to Waffle Pack

- Good for high SKU complexity
- Damage free shipping and handling
 - Suitable for thin, MEMS, compound semi etc.
- Faster to market
 - No design or tolling time to custom design trays
- Limitations
 - Curved optics
 - not suitable for all bump types and sizes

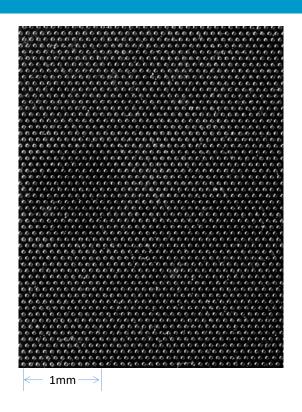
Waffle-Pack Single SKU Only

single VTX trays can handle various IC chip sizes

Gel-Pak

Roll-to-Roll Dry Adhesive Film

- Unique processing technology developed for offer roll-to-roll film
- Flexible film that can be laminated onto most rigid surfaces to offer different form factors.
- Compatible will most bare IC. Working on expanding to packaged IC.



Summary

- Commercially available "Dry" Adhesive technology for a range of IC handling use
- A universal surface format that is not restrictive like commercial molded solutions
- Securely holds the IC during transport but easy to pick
- Customizable from a 2inch tray to a 300mm wafer dimension
- Drop-in solution to existing PnP and SMT machines

Thank You

